
SOLUTIONS TO SELECTED PRACTICE PROBLEMS FOR EXAM 2

1. Find the absolute minimum and maximum values of the function f(x, y) = 1
2x

2 + y2 on the elliptic disk
D : 0 ≤ 1

2x
2 + y2 ≤ 1 by finding critical points on the interior of D and using a Lagrange multiplier on the

boundary of D.
Solution. On the interior of D we solve

fx = x = 0

fy = 2y = 0

so that (0,0) is the only critical point in the interior of D. On the boundary of D, the resulting constraint
is the same as the function, and since the largest value of the constraint is 1, we have that the maximum
value of f(x, y) on the boundary of D equals 1. Thus, over the region D, the maximum value is 1 and the
minimum value is 0. Note that we can still get the same answer using a Lagrange multiplier. If we set
g(x, y) = 1

2x
2 + y2 = 1, from ∇f = λ∇g, we have

x = λx

2y = 2y.

Notice that when λ = 1, all points satisfying the constraint equation satisfy these equations, so that every
point on the boundary of D is a critical point, and each of these points yields the maximum value of 1 for
f(x, y) along the boundary of D.
2. Find the maximum and minimum values of f(x, y, z) = x2 + y2 + z2 − x + y subject to the constraint
x2 + y2 + z2 = 1. Use this to find the absolute maximum and minimum values of f(x, y, z) on the solid
0 ≤ x2 + y2 + z2 ≤ 1. Hint: The critical points on the interior of D satisfy fx = fy = fz = 0.
Solution. For the critical points in the interior of the sphere we have

fx = 2x− 1 = 0

fy = 2y + 1 = 0

fz = 2z = 0

from which it follows that (− 1
2 ,−

1
2 , 0) is a critical point. Using g(x, y, z) = x2+y2+z2 = 1 for the constraint

equation, upon setting ∇f = λnbg, we have
2x− 1 = λ2x

2y + 2 = λ2y

2z = λ2z.

If z ̸= 0, then third equation implies λ = 1, but this leads to a contradiction by setting λ = 1 in the first
equation. Thus, we must have z = 0. Furthermore, if we multiply the first equation by y and the second
equation by x and subtract, we get −y − x = 0, so y = −x. Using this in the constraint equation we have
x2 + (−x)2 + 02 = 1, so that 2x2 = 1, so x = ±

√
2
2 . Thus critical points on the boundary are: (

√
2
2 ,−

√
2
2 , 0)

and (−
√
2
2 ,

√
2
2 , 0). From the equations

f(
1

2
,−1

2
, 0) = −1

2

f(

√
2

2
,−

√
2

2
, 0) = 1−

√
2

f(−
√
2

2
,

√
2

2
, 0) = 1 +

√
2
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we see that the absolute maximum value of f(x, y, z) over the solid sphere is 1 +
√
2 and the absolute

minimum value is 1 −
√
2. These are also the maximum and minimum values of f(x, y, z) subject to the

given constraint.

3. Find the extreme values of f(x, y, z) = x+ y+ z subject to the constraints x2 + y2 = 2 and x+ z− 1 = 0.

Solution. Writing the constraints as g1(x, y, z) = x2 + y2 − 2 = 0 and g2(x, y, z) = x+ z − 1 = 0 and setting
∇f = λ2∇g1 + λ2∇g2 we have

1 = λ12x+ λ2

1 = λ12y

1 = λ2.

Setting λ2 = 1 in the first equation gives 2λ1x = 0. The second equation preclude λ1 = 0, so x = 0. Using
this in the second constraint gives z = 1. Putting x = 0 in the first constraint gives y2 = 2, so y = ±

√
2.

Thus, the critical points are: (0,
√
2, 1) and (0,−

√
2, 1). Evaluating f(x, y, z) at these critical points yields

a maximum value of 1 +
√
2 and a minimum value of 1−

√
2.

5. OS Chapter 5: # 105: Find the volume under the graph of z = x3 above the region D in the plane
bounded by x = sin(y), x = − sin(y), x = 1, with π

2 ≤ y ≤ 3π
2 .

Solution. Without loss of generality, we interchange the roles of x and y, so that we want
∫ ∫

D
y3 dA, with

D pictured below.

,

where the brown line is that portion of y = sin(x) with π
2 ≤ x ≤ π and the blue line is that portion of

y = − sin(x), with ≤ x ≤ 3π
2 . The green line is the corresponding part of y = 1. Thus, the volume in

question is:

∫ π

π
2

∫ 2

sin(x)

y3 dy dx+

∫ 3π
2

π

∫ 1

−sin(x)

y3 dy dx.
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To calculate these integrals, we will need the formula sin4(x) = 3
8 − 1

2 cos(2x) +
1
8 cos(4x), which can be

derived from the double angle formulas for sine and cosine. For the first of the two integrals we have∫ π

π
2

∫ 2

sin(x)

y3 dy dx =
1

4

∫ π

π
2

y4
∣∣∣∣y=1

y=sin(x)

dx

=
1

4

∫ π

π
2

1− sin4(x) dx

=
1

4

∫ π

π
2

1− (
3

8
− 1

2
cos(2x) +

1

8
cos(4x)) dx

=
1

4

∫ π

π
2

5

8
+

1

2
cos(2x)− 1

8
cos(4x) dx

=
1

4
(
5

8
x+

1

4
sin(2x)− 1

32
sin(4x))

∣∣∣∣π
π
2

=
1

4
{(5

8
π + 0− 0)− (

5

8
· π
2
+ 0− 0)}

=
5π

64
.

Either by symmetry or essentially the same calculation, the second integral also equals 5π
64 . Thus the required

volume is 5π
64 + 5π

64 = 5π
32 .

5. OS Chapter 5: #178. (a) Show that the volume of the spherical cap below equals πh
6 (3a2 + h2).

,

Solution. The first thing to notice is that the domain of integration will be D : 0 ≤ x2 + y2 ≤ a2. However,
the double integral of the top half of the sphere over D gives all of the volume above D and under the
sphere, which is more than the cap. The excess amount is the cylinder of radius a and height R−h that the
spherical cap sits on. Thus, the volume we seek is∫ ∫

D

√
R2 − x2 − y2 dA− πa2(R− h).

Calculating the double integral using polar coordinates, we have∫ ∫
D

√
R2 − x2 − y2 dA =

∫ 2π

0

√
R2 − r2 r dr dθ

=

∫ 2π

0

−1

3
(R2 − r2)

3
2

∣∣∣∣r=a

r=0

dθ

=

∫ 2π

0

−1

3
(R2 − a2)

3
2 +

1

3
R3 dθ

=
2π

3
{−(R2 − a2)

3
2 +R3}.
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Thus, the volume of the spherical cap is
2π

3
{−(R2 − a2)

3
2 +R3} − πa2(R− h).

Now we have to do a bit of algebra to put this expression into the required form. From the picture above
we see that R2 = (R − h)2 + a2. This tells us that R2 − a2 = (R − h)2, from which it follows that
(R2 − a2)

3
2 = (R − h)3. Expanding R2 − a2 = (R − h)2 = R2 − 2Rh + h2 also gives that 2Rh = h2 + a2.

Solving for R we get R = h2+a2

2h and R− h = a2−h2

2h . We will use these equations below.
We now have that the volume we seek is

2π

3
{−(R2 − a2)

3
2 +R3} − πa2(R− h) =

2π

3
{−(R− h)3 +R3} − πa2(R− h)

=
2π

3
{−R3 + 3R2h− 3Rh2 + h3 +R3} − πa2(R− h)

=
2π

3
{3Rh(R− h) + h3} − πa2(R− h)

= 2πRh(R− h) +
2π

3
h3 − πa2(R− h)

= (R− h){2πRh− πa2}+ 2π

3
h3

=
a2 − h2

2h
{π · (h2 + a2)− πa2}+ 2π

3
h3

=
a2 − h2

2h
π h2 +

2π

3
h3

=
πa2h

2
− π

2
h3 +

2π

3
h3

=
πa2h

2
+

πh3

6

=
πh

6
(3a2 + h2).

Part (b) Show that the volume volume of the region in the sphere bounded between the given disks (i.e., the
spherical segment) equals πh

6 (3a2 + 3b2 + h2)

,

Solution. Let Ca denote the spherical cap with base the indicated disk of radius a and Cb denote the spherical
cap with base the indicated disk with radius b. Let d denote the height of Ca and c denote the height of Cb.
Let us denote by S the spherical segment whose volume we seek. Then

volume(S) = volume(Ca)− volume(Cb) =
πd

6
(3a2 + d2)− πc

6
(3b2 + c2).

We must show that πh
6 (3a2+3b2+h2) = πd

6 (3a2+d2)− πc
6 (3b2+c2). As in part (a), we have R2 = (R−d)2+a2

and R2 = (R− c)2 + b2. The first equation implies that (∗) a2 = 2Rd− d2 and the second equation implies
4



that (∗∗) b2 = 2Rc− c2. We will use these equations below, along with h = d− c. We have:
πh

6
(3a2 + 3b2 + h2) =

π

6
(d− c)(3a2 + 3b2 + h2)

=
πd

6
(3a2 + 3b2 + h2)− πc

6
(3a2 + 3b2 + h2)

=
πd

6
(3a2 + 3b2 + d2 − 2dc+ c2)− πc

6
(3a2 + 3b2 + d2 − 2cd+ c2)

=
πd

6
(3a2 + d2) +

πd

6
(3b2 − 2dc+ c2)− πc

6
(3b2 + c2)− πc

6
(3a2 + d2 − 2cd)

= volume(Ca)− volume(Cb) +
πd

6
(3b2 − 2dc+ c2)− πc

6
(3a2 + d2 − 2cd)

= volume(S) + πd

6
(3b2 − 2dc+ c2)− πc

6
(3a2 + d2 − 2cd).

To finish we must show that
πd

6
(3b2 − 2dc+ c2)− πc

6
(3a2 + d2 − 2cd) = 0,

and for this, it suffices to show that
d(3b2 − 2dc+ c2)− c(3a2 + d2 − 2cd) = 0.

Thus, we must show that
3db2 − 2d2c+ dc2 − 3ca2 + 2c2d− cd2 = 0.

Simplifying, this is equivalent to showing that
(∗ ∗ ∗) b2d− a2c+ c2d− cd2 = 0.

Now, if we multiply (**) by d and (*) by c and subtract, we get b2d − a2c = cd2 − c2d. Substituting this
into (***) gives 0, which is what we want.
5. OS Chapter 5: #389: This problem asks to find the area of the triangle R:

,

by finding a linear transformation T from the uv plane such that T (0, 0) = (0, 0), T (1, 0) = (2, 0), and
T (0, 1) = (1, 3). This transformation will then take the triangle S in the uv-plane with vertices (0,0), (1,0),
(0,1) to R.
Solution. From class we seen that we can take T (u, v) = (2u+ v, 3v). It is easy to check that Jac(T ) = −3,
so that |Jac(T )| = 3. Thus,

area(R) =

∫ ∫
R

dA

=

∫ ∫
S

3 du dv

= 3 · area(S)
= 3,

as expected.
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5. OS Chapter 5: #391. Calculate
∫ ∫

R
(y2 − xy) dA, for R

,

for the given transformation.

Solution. The equations u = y − x and v = y, can be rewritten as x = v − u and y = v, which tells
us our transformation should be T (u, v) = (v − u, v). Substituting the vertices of R into the equations
u = y−x, v = y yields, vertices (0,0), (-1,0), (-1,1), (0,1) in the uv-plane, so that T transforms the rectangle
S = [−1, 0]× [0, 1] in the uv-plane to R in the xy-plane. IT is easy to see that Jac(T )| = 1, so that∫ ∫

R

(y2 − xy) dA =

∫ 1

0

∫ 1

0

vu dv du

=

∫ 1

0

u

2
du

=
1

4
.

5. OS Chapter 5: #431. Find the volume of the solid bounded by the cylinder x2 + y2 = 16, from z = 1 to
x+ z = 2.

Solution. We are finding the volume of the solid between the planes z = 1 and z = 2 − x, above the disk
D : 0 ≤ x2 + y2 ≤ 16 in the xy-plane. Notice that if x ≥ 1, then 2 − x ≤ 1 and if x ≤ 1, then 1 ≤ 2 − x.
Thus, the volume we seek is:∫ 1

−4

∫ √
16−x2

−
√
16−x2

(2− x)− 1 dy dx+

∫ 4

1

∫ √
16−x2

−
√
16−x2

1− (2− x) dy dx (⋆)

For the first integral in (⋆) we have∫ 1

−4

∫ √
16−x2

−
√
16−x2

(2− x)− 1 dy dx =

∫ 1

−4

∫ √
16−x2

−
√
16−x2

1− x dy dx

=

∫ 1

−4

(1− x)y

∣∣∣∣y=
√
16−x2

y=−
√
16−x2

dx

= 2

∫ 1

−4

(1− x)
√
16− 4x2 dx

≈ 71.78,

the last single integral being worked numerically, though one could use the standard (complicated) formula
for
∫ √

1− x2 dx typically found on the inside cover of a calculus book. Similarly, second integral in (⋆) is
approximately 21.51, so the required area is approximately 93.29.
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6. Calculate
∫ ∫

D
(x+ y) dA, for D

,

using the transformation G(u, v) = ( u
v+1 ,

uv
v+1 ).

Solution. We need to find the region R in the uv-plan that G(u, v) transforms to D. We use the equations
of the lines bounding D. If y = x, then u

v+1 = uv
v+1 , from which we get v = 1. Similarly, the equation y = 2x

yields v = 2. The line in the xy plane containing (0,3) and (3,0) is y = −x+3. If we solve the corresponding
equation uv

v+1 = − u
v+1 + 1 for u we get u = 3. Similarly, the lime through (0,6) and (6,0) in the xy plane

gives rise to u = 6. Thus, the region R in the uv-plane is bounded by the lines v = 1, v = 2, u = 3, u = 6, so
that R = [3, 6]× [1, 2]. Calculating the Jacobian, we get

∂(x, y)

∂(u, v)
= det

(
1

v+1 − u
(v+1)2

v
v+1

u
(v+1)2

)
=

u

(v + 1)3
+

uv

(v + 1)3
=

u

(v + 1)2
.

Since 3 ≤ u ≤ 6, we have |∂(x,y)∂(u,v) | =
u

(v+1)2 . Thus,∫ ∫
D

(x+ y) dA =

∫ 6

3

∫ 2

1

(
u

v + 1
+

uv

v + 1
) · u

(v + 1)2
dv du

=

∫ 6

3

∫ 1

0

u2

(v + 1)2
dv du

=

∫ 6

3

u2(− 1

v + 1
)v=2
v=1 du

=
1

6

∫ 6

3

u2 du

=
1

6
(
63

3
− 33

3
)

=
21

2
.

7. Calculate
∫ ∫

D
exy dA, for D the region

,

by using the inverse of the transformation F (x, y) = (xy, x2y).
Solution. To find G(u, v), the inverse of F (x, y), we use the equations u = xy and v = x2y to solve for
x and y in terms of u and v. These equations give u

x = y = v
x2 , and thus, u

x = v
x2 yields x = v

u . Since
y = u

x , we infer y = u2

v . Thus, G(u, v) = ( vu ,
u2

v ). Note that when xy = 10 and xy = 20, then u = 10
7



and u = 20. This shows that G(u, v) takes the lines u = 10 and u = 20 in the uv-plane to the hyperbolas
xy = 10 and xy = 20 in the xy-plane. Similarly, G(u, v) takes the lines v = 20 and v = 40 in the uv-plane
to the graphs of x2y = 20 and x2y = 40 in the xy-plane. Now let’s look at the four corners of the rectangle
R in the uv-plane determined by the lines u = 10, u = 20, v = 20, v = 40. The lower left corner is (10, 20).
G(10, 20) = (2, 5) which is the lower left corner of the region D. G(10, 40) = (4, 2.5) which is the lower right
corner of D. Similarly, G(u, v) takes the other two corners of R to the remaining corners of D, so it follows
that G transforms R into D (by continuity of G(u, v) and the fact that for the point (10, 30) in the interior
of R, G(10, 30) = (3, 10

3 ) lies in the interior of D).

For the absolute value of the Jacobian of G(u, v) we have∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ =∣∣∣∣det(− v
u2

1
u

2u
v −u2

v2

)∣∣∣∣ =∣∣∣∣− 1

v

∣∣∣∣ = 1

v
.

Thus, ∫ ∫
D

exy dA =

∫ 40

20

∫ 20

10

eu · 1
v
du dv

=

∫ 40

20

(e20 − e10) · 1
v
dv

= (e20 − e10)

∫ 40

20

1

v
dv

= (e20 − e10) · (ln(40)− ln(20)) = (e20 − e10) · ln(2).

8.
∫ ∫

D

√
x+ y(x− y)2 dA, where D is the region bounded by the lines x = 0, y = 0, x+ y = 1.

Solution. Because the integrand has no obvious ant-derivative with respect to either variable, we try to
simplify it with a change of variables. If we choose u and v so that u = x+ y and v = x− y, then integrand
then becomes

√
uv2, which we can anti-differentiate. We can solve the system of equations u = x + y and

v = x− y for x and y in terms of u and v and this will give the required change of variables. Upon doing so,
we have x = u+v

2 and y = u−v
2 . Call this transformation G(u, v). From this, it follows that

∂(x, y)

∂(u, v)
= det

(
1
2

1
2

1
2 − 1

2

)
= −1

2
,

from which we get
∣∣∣∣∂(x,y)∂(u,v)

∣∣∣∣ = 1
2 . We now have to see what region in the uv-plane gets transformed to the

region D in the xy plane, which is the triangle below:

.

One edge of the triangle D is x + y = 1. In terms of u and v, this equation becomes u = 1. Thus, G(u, v)
transforms the line u = 1 in the uv plane to the line x+ y = 1 in the xy-plane. Similarly, the equation x = 0
in terms of u and v becomes u = y, v = −y, so that v = −u, while the equation y = 0 yields u = x, v = x,
so that v = u. Thus, if we let D0 be the region in the uv-plane bounded by the lines u = 1, v = −u, and
v = u,
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,

we see that G(D0) = D. Thus,∫ ∫
D

√
x+ y(x− y)2 dA =

∫ ∫
D0

√
uv2

1

2
dA

=
1

2

∫ 1

0

∫ u

−u

√
uv2 dv du

=
1

2

∫ 1

0

√
u(

v3

3
)v=u
v=−u du

=
1

6

∫ 1

0

2u
7
2 du

=
1

3
· 2
9
(u

9
2 )

∣∣∣∣1
0

=
2

27
.

9.
∫ ∫

D
1

(x2+y2)
3
4
dA, where D is the disk centered at the origin in R2 with radius R.

Solution. This is an improper double integral, as f(x, y) is unbounded on D (since lim(x,y)→(0,0) f(x, y) tends
to infinity). Let Dϵ denote the region ϵ2 ≤ x2 + y2 ≤ R2, and we consider limϵ→0

∫ ∫
Dϵ

f(x, y) dA. If this
limit exists, it equals

∫ ∫
D

1

(x2+y2)
3
4
dA. We have

lim
ϵ→0

∫ ∫
Dϵ

f(x, y) dA = lim
ϵ→0

∫ ∫
Dϵ

1

(x2 + y2)
3
4

dA

= lim
ϵ→0

∫ 2π

0

∫ R

ϵ

1

(r2)
3
4

r dr dθ

= lim
ϵ→0

∫ 2π

0

∫ R

ϵ

1

r
3
2

r dr dθ

= lim
ϵ→0

∫ 2π

0

∫ R

ϵ

r−
1
2 dr dθ

= lim
ϵ→0

∫ 2π

0

2
√
r

∣∣∣∣R
ϵ

dθ

= lim
ϵ→0

∫ 2π

0

2(
√
R−

√
ϵ) dθ

= lim
ϵ→0

4π(
√
R−

√
ϵ)

= 4π
√
R.

10.
∫ ∫

R2 e
−x2−y2

dA.
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Solution. We may test convergence of the double integral by integrating over increasing disks DR of radius
R centered at the origin. If the limit exists as R → ∞, it equals

∫ ∫
R2 e

−x2−y2

dA.

lim
R→∞

∫ ∫
DR

e−(x2+y2) dA = lim
R→∞

∫ 2π

0

∫ R

0

e−r2 r dr dθ

= lim
R→∞

∫ 2π

0

−1

2
e−r2

∣∣∣∣r=R

r=0

dθ

= lim
R→∞

∫ 2π

0

−1

2
e−R2

+
1

2
dθ

= lim
R→∞

2π(−1

2
e−R2

+
1

2
)

= 2π(0 +
1

2
)

= π.

11.
∫ ∫

D
1

x2y2 dA, where D is the set of points in R2 satisfying 2 ≤ x ≤ ∞ and 2 ≤ y ≤ ∞.
Solution. We may test convergence of the double integral by integrating increasing rectangles (or squares)
whose lower left corner is (2,2). Let Da denote the square [2, a]× [2, a] with 2 ≤ a < ∞. If the limit exists
as a → ∞, it equals

∫ ∫
D

1
x2y2 dA.

lim
a→∞

∫ ∫
Da

1

x2y2
dA = lim

a→∞

∫ a

2

∫ a

2

1

x2y2
dy dx

= lim
a→∞

∫ a

2

− 1

x2y

∣∣∣∣y=a

y=2

dx

= lim
a→∞

∫ a

2

− 1

ax2
+

1

2x2
dx

= lim
a→∞

(
1

ax
− 1

2x
)

∣∣∣∣x=a

x=2

= lim
a→∞

{( 1
a2

− 1

2a
)− (

1

2a
− 1

4
)}

=
1

4

12. Compare your answer in problem 11 with (
∫∞
2

1
x2 dx)2. Can you explain the relation between these two

answers?
Solution. A calculation similar, though easier, than the one above shows that lima→∞

∫ a

2
1
x2 dx = 1

2 . The
answer in problem 12 is the square of the answer in problem 11, since∫ a

2

∫ a

2

1

x2y2
dy dx =

∫ a

2

{
∫ a

2

1

x2y2
dy} dx

=

∫ a

2

1

x2
{
∫ a

2

1

y2
dy} dx

= {
∫ a

2

1

y2
dy}

∫ a

2

1

x2
dx

= {
∫ a

2

1

y2
dy}2,

and the limit of a square is the square of the limits, assuming both limits exist.
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